Header image header image 2  
De la disquette au stockage holographique
  || ACCUEIL ||
   
 
Le Disque Dur
   

L’historique

Les ingénieurs d'IBM n'étaient pas satisfaits des systèmes de stockage sur tambours magnétiques : l'efficacité volumétrique était très faible, les tambours occupaient beaucoup d'espace pour peu de capacité. En 1953, un ingénieur récemment embauché eut l'idée de superposer des plateaux le long d'un axe et d'y adjoindre une tête de lecture/écriture mobile, située sur un axe parallèle à celui des plateaux. Cette tête venait s'insérer entre les plateaux pour lire les informations, mais devait se retirer complètement pour passer d'un plateau à un autre. Un prototype fut construit avec une vitesse de rotation d'environ 1 000 tours/minute. À cette vitesse il était compliqué de maintenir les têtes au-dessus de la surface des plateaux. L'idée fut alors d'injecter de l'air sous-pression au travers de la tête de lecture, ce qui la maintenait au-dessus du plateau. La distance tête-plateau était de 20 μm.


En 1955, le premier système de ce type a été dévoilé au public par IBM, il fut baptisé RAMAC (Random Access Method of Accounting and Control), modèle 305, et la production commerciale commença en juin 1957. Jusqu'à 1961 plus d'un millier d'unités furent vendues. Son prix : 10 000 dollars (de l'époque) par mégaoctet. Le RAMAC 305 était constitué de 50 disques de 24 pouces de diamètre, deux têtes de lecture/écriture qui pouvaient se déplacer d'un plateau à un autre en moins d'une seconde. La capacité totale était de cinq millions de caractères


En juin 1954 J. J. Hagopian, ingénieur IBM, a l'idée de faire « voler » les têtes de lecture/écriture au dessus de la surface des plateaux, sur un coussin d'air. Il propose le design de la forme de ces têtes. En septembre 1954 il dessine l'équivalent des disques durs actuels : des plateaux superposés et un axe sur lequel sont fixées les têtes de lecture/écriture. Cela deviendra un produit commercial en 1961 sous la dénomination « IBM 1301 Disk Storage ».


Fin 1969, trois ingénieurs réfléchissent à ce qui pourrait être pour eux le système disque idéal. Ils tombent d'accord sur un modèle composé de deux disques de 30 Mo chacun, l'un amovible, l'autre fixe. « 30 - 30 » donc, qui est aussi un modèle de carabine Winchester. Le nom est resté, et encore aujourd'hui un disque Winchester désigne un disque dur non amovible (soit quasiment tous les disques produits aujourd'hui).


En 1998, année où l'on commémorait le centenaire de l'enregistrement magnétique (inventé par le Danois Valdemar Poulsen), IBM commercialisa le premier disque dur de 25 gigaoctets (Deskstar 25 GP), capacité présentée à l'époque par la presse comme disproportionnée par rapport aux besoins réels des particuliers. Cinq ans plus tard, on considérait 80 Go comme une taille à peine suffisante. En 50 ans, la capacité des disques durs a été multipliée par un facteur 500 000 puisqu'un disque dur de 2007 peut atteindre 1 To (sous un volume incomparablement moindre).


En 29 ans, le prix du mégaoctet a été divisé par 1,3 million. Le constructeur Seagate a par exemple livré son premier disque dur en 1979. Baptisé ST506, il pouvait stocker 5 Mo de données et coûtait à l'époque 1 500 dollars, soit 300 dollars par mégaoctet. Aujourd'hui (2008), alors que ce constructeur en est à son milliardième disque dur livré, le mégaoctet d'un disque dur ne coûte plus que 0,00022 dollar, soit un cinquantième de cent environ.

Principe de fonctionnement

Dans un disque dur, on trouve des plateaux rigides en rotation. Chaque plateau est constitué d'un disque réalisé généralement en aluminium, qui a les avantages d'être léger, facilement usinable et non magnétique. Des technologies plus récentes utilisent le verre ou la céramique, qui permettent des états de surface encore meilleurs que ceux de l'aluminium. Les faces de ces plateaux sont recouvertes d'une couche magnétique, sur laquelle sont stockées les données. Ces données sont écrites en code binaire [0,1] sur le disque grâce à une tête de lecture/écriture, petite antenne très proche du matériau magnétique. Suivant le flux électrique qui traverse cette tête, elle modifie le champ magnétique local pour écrire soit un 1, soit un 0, à la surface du disque. Pour lire, c'est le même principe qui est utilisé, mais dans l'autre sens : le champ magnétique local engendre un flux électrique au sein de la tête qui dépend de la valeur précédemment écrite, on peut ainsi lire un 1 ou un 0.
Un disque dur typique contient un axe central autour duquel les plateaux tournent à une vitesse de rotation constante. Les têtes de lecture/écriture sont reliées à une même armature qui se déplace à la surface des plateaux, avec une tête par plateau. L'armature déplace les têtes radialement à travers les plateaux pendant qu'ils tournent, permettant ainsi d'accéder à la totalité de leur surface.
L'électronique associée contrôle le mouvement de l'armature ainsi que la rotation des plateaux, et réalise les lectures et les écritures suivant les requêtes émises par le contrôleur du disque.

Performance

Pour lire le secteur (en vert) situé sur une piste interne à l'opposée de la tête de lecture (en rouge), il faut déplacer la tête vers l'intérieur (TSeek), attendre que le bloc arrive sous la tête (TLatence) puis lire la totalité du bloc (TTransmission). Il est possible d'optimiser le temps d'accès en prenant en compte la vitesse de rotation pendant que la tête se déplace.

 

Pour lire le secteur (en vert) situé sur une piste interne à l'opposée de la tête de lecture (en rouge), il faut déplacer la tête vers l'intérieur (TSeek), attendre que le bloc arrive sous la tête (TLatence) puis lire la totalité du bloc (TTransmission). Il est possible d'optimiser le temps d'accès en prenant en compte la vitesse de rotation pendant que la tête se déplace.
Le temps d'accès et le débit d'un disque dur permettent d'en mesurer les performances. Les facteurs principaux à prendre en compte sont :
Voici deux disques comparés. Le premier, le DEC RP07 équipait les ordinateurs DEC des années 1970-80, tandis que le Maxtor est un disque de 3,5 pouces récent (2004). Ils peuvent tous les deux être considérés comme des disques haut de gamme au moment de leur mise sur le marché.

DEC RP07

   

Maxtor Atlas 15k

Hauteur (cm)

118

2,6

Largeur (cm)

67,3

10,1

Profondeur (cm)

83,8

14,7

Poids (Kg)

181

0,81

Capacité (Mo)

516

150 528 (150,5 Go)

Vitesse de rotation (t/m)

3 633

15 000

Temps de latence moyen (ms)

8,3

2

Seek time piste à piste (ms)

5

0,3/0,5

Seek time moyen

23

3,4/3,8

Taux de transfert maximum (Mo/s)

2,1

100

Nombre de plateaux

9

4

L'ajout de mémoire vive sur le contrôleur du disque permet d'augmenter les performances. Cette mémoire sera remplie par les blocs suivants le bloc demandé, en espérant que l'accès aux données sera séquentiel. En écriture, le disque peut informer l'hôte qui a initié le transfert que celui-ci est terminé alors que les données ne sont pas encore écrites sur le média lui-même. Comme tout système de cache, cela pose un problème de cohérence des données.

Les capacités actuelles (2007) s'échelonnent entre 74 Mo et 8 To (téraoctets) atteints grâce à l'utilisation de plusieurs disques durs à la fois. Le disque dur seul à la capacité la plus importante est l’Hitachi Deskstar T7K1000, qui dispose d'1 To (téra-octets) (2007). La capacité des disques durs a augmenté beaucoup plus vite que leur rapidité, limitée par la mécanique.

Depuis peu cependant, les disques durs rentrent en concurrence frontale avec les mémoires Flash, qui sont moins sensibles car faites d'électronique pur, et dont le cout devient de plus en plus abordable, et qui ont des performances en termes de temps d’accès largement supérieure (plus de déplacement de tête de lecture par exemple).

 

 

 
   
INSA de Strasbourg - Copyright ©2008 - Romain Denis - Guillaume Hauschka - Frédéric Koeppel